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Abstract. The static dielectric function of electronic liquids is studied in a wide range of
thermodynamic parameters. The local-field correction torirepermeability is modelled to
satisfy the compressibility sum rule and the short-wavelength exact relation to the zero-separation
value of the radial distribution function. The latter is determined by a self-consistency procedure
and is shown to verify all known asymptotic conditions.

1. Introduction

A natural approach to the investigation of static correlations in strongly coupled, specifically,
inertial fusion plasmas, is based on the separation of electronic and ionic components of
the system, so that the interionic interactions are assumed to be screened by the electronic
static dielectric functiore.(k). In dense systems the latter should be treated beyond the
random-phase approximatiorAp), i.e. the calculation of, (k) involves the electronic static
local field correction (FC) G.(k) = G.(k, w = 0),
Q0,0
=1t 1 G wok 0 W

where Q(k, 0) is the producte (k)T1%(k, ) at @ = 0, and %k, w) is the electronic
polarization operator in thera, ¢ (k) = 4me?/ k.

There exist various approaches to the computation ofLtHeG,(k) (see, e.g. [1]),
but mostly they are applicable in specific realms of the system phase diagram. The most
notable and far-reaching approach is the modified-convolution approximat@x) fnodel
suggested by Ichimaru and his co-workers [1]. We present a simple alternative model which
is to serve as a basis for future studies of various properties of strongly coupled systems.

The aim of this paper is to propose and check a self-consistent method of calculation
of G,.(k) based on its limiting properties and adjusted to the Monte Carty) {lata on the
one-component plasma¢pP) equation of stateEs) [2,3]. Preliminary results obtained
within this approach were published elsewhere [4].

2. The model
The interpolating formula for the electroniec suggested in [3, 4]
k2

Gelk) = —5——5
ak? + bk?

@)
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incorporates both long- and short-wavelength asymptotic values, &), kr = (372n)/2
is the Fermi wavenumber.
In particular,

bt = lim G.(k). )
k—o00
The short-range behaviour @f.(k) in the low-temperature limit has been studied in

the papers of Shaw [5] and Kimball [6] (see also [7, 8]). Namely, it has been shown that if
T — 0 in hydrogen-like systems,

b t=1-g.(0 4)

whereg,(r) is the usual electronic radial distribution function. This result is based on the
famous ‘cusp’ condition

0 1
((f) = .0 (5)
r/Jr=0 ap

which can be obtained from the s-solution of the two-particle &tinger equation at = 0,
whereag is the Bohr radius (see, e.g. [6]).

On the other hand, sinc@,.(k — o0) involves only the short-range properties of the
system, one expects the asymptotic value

G.(00) = klim G (k) (6)
to be finite and the relation
1- ge(o) = kllm G (k) (7)

to hold at arbitrary values of temperature
The relation (7) stems from the asymptotic value [6]

ag(r) _ 3 . 4y
( or >ro e kILmoo(k (1= S.(k))) @®

where
5.0 =1+ [ dré (e, ~ 1 o

or of electrons.
The long-wavelength behaviour of the latter was studied by Kimball [6, 7] at O:

8k3 1
1—S.(k) = 3ﬂa2k4 (1= Ge(x) +0 <k6> : (10)

At T # 0 the same asymptotic formula (10) also follows from the fluctuation—dissipation
theorem,

n +oo Bhw
S, (k) = — oth{ === ) Im (&, (k, )) d 11
(k) mw(k)/o c <2>m(se<w))w (12)
and the statieC approximation for the dynamic electronic dielectric function,
k
ek, w) =14 2k @) (12)

1-G.(t)Q(k, »)

In equation (11): is the Planck constant ang™! is the system temperatufe in energy
units.
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The imaginary part of1(k, ) is exponentially small ag — oo [9], and Ime; 1 (k, )
can be substituted by

T
—m(S 1+ @A - G.(0)ReQ(k — oo, w)) (13)
(8(z) is the Diracs-function), while the asymptotic form of Rk — oo, w) is just [9]
~ (83w =) (14)

Here the Lindhardt notations are introduced:

on =nwkrag Z =k/2kF u= (mw)/(ﬁkkF) (15)

wherem is the electronic mass.

The expansion (10) has been confirmed by our computations (see further on) with a
very high precision.

Returning to the interpolation form (2) for thec, one notices that the long-wavelength
behaviour of G.(k — 0) ~ a~(k/kp)? is responsible for the screening of a static
impurity in the plasma. On the other hand, the parameter determined by the system
thermodynamic properties via the compressibility sum rule,

~ kr\?  (k2G.(k) kr\? P
= () im(PE) = () (-(5),) e

wherek? = 4mne?p is the Debye radius an#t is the pressure.
The most recentic data on theocp EOS[2]
U r
pn AU _n nD)
B 3 B 3
(U is the system interaction energy afid= Be?(4rn/3)Y/3) were utilized in this paper
with

(17)

f()=AT + B+ cr¥34 pri3 (18)

andA = —0.8993749,B = —0.2244699,C = —0.0178747,D = 0.5175753.

The interpolation form (17) valid in a very wide region of valuesIofO < I' < 200,
brought us to a simple algebraic expression fordhgarameter,

_ 2\—-1/3 é E -1 2£ —4/3 5£ 2/3>_1
a=-(12r% (9+12F TR '

No quantum effects are included in tl®os (17) and, hence, there is discrepancy
between (19) (and, thus, equation (2) too) and our desire to apply it to electron liquids
under ‘quantum’ thermodynamic conditions.

To diminish the influence of this inconsistency, the paramgtéd) (andb of (2)) was
determined by a precise self-consistent procedure. In effect, the valu€®df(which itself
has a profound physical meaning [1]) was computed via a simultaneous solution of two
integral equations,

(19)

ll ., ’l
Sy =y DD (20)

1:711 8€(Z’ l)

4(0) = 1+12 / (S(2) — Da?dz. (21)
0
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In equation (20) the summation is over the Matsubara frequengies, (7 ®1)/(2z),
and

r Pz, D)
(1272)1/3 72
as usually® = 2m/(Bh%k2), thel;-parameter was determined by the numerical precision.

P.(z,1) in equation (20) is the dimensionless polarization operatok, ) with the
LFC,

8€(Zyl) =1+ (22)

0 I G.()P%z.D\ "
Po(z. 1) = P2z, 1) <1— 2001 ~ ) (23)
-1
Go(2) = (b+ (Z‘Z’)Z) b=1-gO). (24)

The RPA dimensionless polarization operatBf(z, /) can be calculated (for each value
of density and temperature,and!) by simple integration,

30 (> ydy z+y+iy
0
D)= — , 25
Pe(@l) 4z /0 e’?/0=n "z —y +iy (25)
while the chemical potentiaj is determined by the normalization condition
12 dt 2
— — _=-0e7%2, 26
/0 et-m+1 3 (26)

We studied the asymptotic behaviour of the model paranget®y and compared (where
possible) our results with those of [1], etc.

The self-consistency procedure, equations (20), (21), proved to be numerically stable,
and the resulting values @f,(0) were independent of the initiation points. The latter did
influence the number of iterations slightly, which varied (for the data given below) between 2
and 5 to ensure the absolute error in the determinatign @) was between 1 and 10°°.

3. Results and conclusions

The results of the above self-consistent procedure to evaluate the zero-separation value of
the electronic radial distribution functiog,(0) are provided in figure 1 . Some additional
points are also given in table 1, where, in particular, we present the valugg®ffor

Table 1. The zero-separation value of the electronic pair correlation fungtiod) for various
values of electronic density and temperature. The valueg @) (last column) are calculated
according to (27) [11]. The values of the parametér® andr, are given for reference.

ne(1P*cm3) T ACPK) T ® s g0 g
0.2579 1.715 1.0 1.0 1.84 0.026 0.1635
1.6100 6.315 0.5 1.08 1.00 0.1262 0.2661
2.063 3.429 1.0 0.5 0.92 0.1633 0.2792
1.611 1.579 2.0 0.27 1.00 0.1903 0.2662
2.517 x10t 1.579x10' 05 0.4342 0.40 0.3198 0.3856
2.579 x 107 1.715x10' 1.0 0.1 0.18 0.4376 0.4430
2.579x10° 1.715x10° 0.1 0.1 0.02 0.4919 0.4939
2.160x10® 3 x108 001 4.24 0.09 0.6960 0.4709
1.250 2.5x10? 0.01 50.00 1.09 0.9850 0.2525
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Figure 1. The zero-separation value of the pair correlation funcgiofr) in the electron liquid

as a function of thee degeneracy parameéeand forI" = 2.0 (one point),[ = 1.0 (long
broken),I" = 0.5 (short broken)[" = 0.1 (dotted) and™ = 0.01 (full). Points represents the
results of the present model, the lines are drawn to distinguish different values of the coupling
parametef.

the electronic density, = 1.60 x 10?* cm™2 and temperaturd” = 1.579 x 10° K and

T =6.315x 10° K, i.e. r, = 1.0 and® = 0.27 and® = 1.0, respectively, being,

as usually, the Wigner—Seitz radius in the unitsagf r;, = I'©/0.543. These values

are the only ones for which we could carry out the comparison with the results published
by Tanakaet al [10]. The values ofg.(0) (0.1903 and 0.1262) coincide with the data of
[10] corresponding to the approximation, when the electrontimmwas set to be zero.

This coincidence is not astonishing, since here we virtually consider the one-component
electronic system.

The self-consistency procedure also permitted us to calculate the static structure factor
of electrons, these results are provided in figure 2 for three characteristic pairs of values of
the parameter¥, ® andg.(0) (see table 1).

For the sake of comparison we also present in table 1 the corresponding valé8) of
calculated according to the formula, obtained by Yasuhara [11] through a resummation of
the electron—electron ladder diagrams,

.(0) = [¢/1(9)]?/8 (27)

whereg >~ 1.629,/r; and I1(q) is the first-order modified Bessel function.

Notice, that though we do not include spin effects (bearing in mind that they would
manifest themselves only in magnetized Coulomb systems) it is obvioug,ttrat 0) £ 0
only for two electrons with opposite spins. Thus, within the Hartree—Fock approximation
when the exchange effects prevail over those of the Coulomb interaction, the vau@)of
is just % This high-degeneracy limiting value is actually the asymptotic valug, )
resulting from our calculations & — 0, and the smalleF, the quickerg,(0) approaches
the quantum ideal-gas valyg’’ (0) = 3.

On the other hand, a® grows, the system becomes more and more classical from the
statistical point of view, when no spin effects could manifest themselves. And if, in addition,
the Coulomb interaction is relatively small’ (~ 0.01), the value ofg.(0) approaches the
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Figure 2. The self-consistent electronic static structure fadglz) (z = k/(2kr)) for three
characteristic pairs of values of density and temperatiire: 0.01, ® = 50.0 (broken curve);

' =056 = 1.0 (full curve); ' = 2.0, = 0.27 (dotted curve). For other parameters, see
table 1.

classical ideal-gas limiting value of 1 already@t~ 10. In systems with stronger Coulomb
interactions ' ~ 0.1) this asymptotic value is reached at higher value®of 150.

In weakly coupled electron liquids witlir = 0.5 the exchange effects resulting in
attraction of electrons with antiparallel spins are compensated for by the Coulomb repulsion,
and in such systems the value @f(0) decreases significantly with growing. Strong
Coulomb coupling ' 2 1) can (asymptotically) reduce the value £f(0) to zero (pure
Coulomb repulsion). In our model it appears that the exchange contributigp(® is
underestimated, so that this reduction already occurs at about.84, which is 22% higher
than the value stemming from the high-density expansion of the Yasuhara’s formula [11],
q=2.

In conclusion, the dielectric formalism is applied to the description of electron one-
component liquids and a simple model expression for the electronic local-field correction
satisfying the compressibility sum rule and the exact short-wavelength limiting (‘cusp’)
condition is studied. The long-wavelength behaviour oftihe is adjusted to theic-fitted
equation of state. The model paramete(0) (the zero-separation value of the electronic
radial distribution function) is obtained by the self-consistency procedure in a wide range of
thermodynamic parameters and is shown to possess physically reasonable limiting properties.

Nevertheless, further studies gf(0) might be carried out to include low-temperature
[12] and dynamic effects.

In addition, to improve the physical self-consistency of our approach, one needs the
guantal EOs either theoretical or numerical (obtained, e.g. within a quantum-statistical
variant of themc method).

The staticLFc determined here is expected to become a reliable tool in the determination
of static and thermodynamic characteristics of dense Coulomb systems at intermediate and
high values of temperature. Their dynamic and kinetic properties can be studied within
an alternative approach to those pointed out by Sturm in his recent paper [13], and based
on the construction of the plasma dynamic dielectric function by the method of frequency
moments using all known exact relations and sum rules (see [4, 14] and references therein).
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