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Abstract. The static dielectric function of electronic liquids is studied in a wide range of
thermodynamic parameters. The local-field correction to theRPA permeability is modelled to
satisfy the compressibility sum rule and the short-wavelength exact relation to the zero-separation
value of the radial distribution function. The latter is determined by a self-consistency procedure
and is shown to verify all known asymptotic conditions.

1. Introduction

A natural approach to the investigation of static correlations in strongly coupled, specifically,
inertial fusion plasmas, is based on the separation of electronic and ionic components of
the system, so that the interionic interactions are assumed to be screened by the electronic
static dielectric functionεe(k). In dense systems the latter should be treated beyond the
random-phase approximation (RPA), i.e. the calculation ofεe(k) involves the electronic static
local field correction (LFC) Ge(k) = Ge(k, ω = 0),

εe(k) = 1 + Q(k, 0)

1 − Ge(k)Q(k, 0)
(1)

where Q(k, 0) is the productφ(k)50
e(k, ω) at ω = 0, and 50

e(k, ω) is the electronic
polarization operator in theRPA, φ(k) = 4πe2/k2.

There exist various approaches to the computation of theLFC Ge(k) (see, e.g. [1]),
but mostly they are applicable in specific realms of the system phase diagram. The most
notable and far-reaching approach is the modified-convolution approximation (MCA) model
suggested by Ichimaru and his co-workers [1]. We present a simple alternative model which
is to serve as a basis for future studies of various properties of strongly coupled systems.

The aim of this paper is to propose and check a self-consistent method of calculation
of Ge(k) based on its limiting properties and adjusted to the Monte Carlo (MC) data on the
one-component plasma (OCP) equation of state (EOS) [2, 3]. Preliminary results obtained
within this approach were published elsewhere [4].

2. The model

The interpolating formula for the electronicLFC suggested in [3, 4]

Ge(k) = k2

ak2
F + bk2

(2)
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incorporates both long- and short-wavelength asymptotic values ofGe(k), kF = (3π2n)1/3

is the Fermi wavenumber.
In particular,

b−1 = lim
k→∞

Ge(k) . (3)

The short-range behaviour ofGe(k) in the low-temperature limit has been studied in
the papers of Shaw [5] and Kimball [6] (see also [7, 8]). Namely, it has been shown that if
T → 0 in hydrogen-like systems,

b−1 = 1 − ge(0) (4)

wherege(r) is the usual electronic radial distribution function. This result is based on the
famous ‘cusp’ condition(

∂g

∂r

)
r=0

= 1

aB

ge(0) (5)

which can be obtained from the s-solution of the two-particle Schrödinger equation atr = 0,
whereaB is the Bohr radius (see, e.g. [6]).

On the other hand, sinceGe(k → ∞) involves only the short-range properties of the
system, one expects the asymptotic value

Ge(∞) = lim
k→∞

Ge(k) (6)

to be finite and the relation

1 − ge(0) = lim
k→∞

Ge(k) (7)

to hold at arbitrary values of temperatureT .
The relation (7) stems from the asymptotic value [6](

∂g(r)

∂r

)
r=0

= 3π

8k3
F

lim
k→∞

(k4(1 − Se(k))) (8)

where

Se(k) = 1 +
∫

dr eikr (ge(r) − 1) (9)

or of electrons.
The long-wavelength behaviour of the latter was studied by Kimball [6, 7] atT = 0:

1 − Se(k) = 8k3
F

3πaBk4
(1 − Ge(∞)) + O

(
1

k6

)
. (10)

At T 6= 0 the same asymptotic formula (10) also follows from the fluctuation–dissipation
theorem,

Se(k) = − h̄

πnφ(k)

∫ +∞

0
coth

(
βh̄ω

2

)
Im

(
ε−1
e (k, ω)

)
dω (11)

and the static-LFC approximation for the dynamic electronic dielectric function,

εe(k, ω) = 1 + Q(k, ω)

1 − Ge(k)Q(k, ω)
. (12)

In equation (11) ¯h is the Planck constant andβ−1 is the system temperatureT in energy
units.
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The imaginary part of50
e(k, ω) is exponentially small ask → ∞ [9], and Imε−1

e (k, ω)

can be substituted by

− π

1 − Ge(∞)
δ (1 + (1 − Ge(∞))ReQ(k → ∞, ω)) (13)

(δ(z) is the Diracδ-function), while the asymptotic form of ReQ(k → ∞, ω) is just [9]

− (
χ2

0/3
)
z−2

(
u2 − z2

)−1
. (14)

Here the Lindhardt notations are introduced:

χ−2
0 = πkF aB z = k/2kF u = (mω)/(h̄kkF ) (15)

wherem is the electronic mass.
The expansion (10) has been confirmed by our computations (see further on) with a

very high precision.
Returning to the interpolation form (2) for theLFC, one notices that the long-wavelength

behaviour of Ge(k → 0) ≈ a−1(k/kF )2 is responsible for the screening of a static
impurity in the plasma. On the other hand, the parametera is determined by the system
thermodynamic properties via the compressibility sum rule,

a−1 =
(

kF

kD

)2

lim
k→0

(
k2
DGe(k)

k2

)
=

(
kF

kD

)2 (
1 − β

(
∂P

∂n

)
β

)
(16)

wherek2
D = 4πne2β is the Debye radius andP is the pressure.

The most recentMC data on theOCP EOS[2]

P = n

β
+ βU

3
≡ n

β
+ nf (0)

3
(17)

(U is the system interaction energy and0 = βe2(4πn/3)1/3) were utilized in this paper
with

f (0) = A0 + B + C0−1/3 + D01/3 (18)

andA = −0.899 374 9,B = −0.224 469 9,C = −0.017 874 7,D = 0.517 575 3.
The interpolation form (17) valid in a very wide region of values of0, 0 6 0 6 200,

brought us to a simple algebraic expression for thea parameter,

a = −(12π2)−1/3

(
A

9
+ B

12
0−1 + 2C

27
0−4/3 + 5D

54
0−2/3

)−1

. (19)

No quantum effects are included in theEOS (17) and, hence, there is discrepancy
between (19) (and, thus, equation (2) too) and our desire to apply it to electron liquids
under ‘quantum’ thermodynamic conditions.

To diminish the influence of this inconsistency, the parameterge(0) (andb of (2)) was
determined by a precise self-consistent procedure. In effect, the value ofge(0) (which itself
has a profound physical meaning [1]) was computed via a simultaneous solution of two
integral equations,

Se(z) =
l1∑

l=−l1

Pe(z, l)

εe(z, l)
(20)

ge(0) = 1 + 12
∫ ∞

0
(Se(z) − 1)z2 dz . (21)
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In equation (20) the summation is over the Matsubara frequencies,vl = (π2l)/(2z),
and

εe(z, l) = 1 + 0

(12π2)1/3

Pe(z, l)

z2
(22)

as usually,2 = 2m/(βh̄2k2
F ), the l1-parameter was determined by the numerical precision.

Pe(z, l) in equation (20) is the dimensionless polarization operator5e(k, ω) with the
LFC,

Pe(z, l) = P0
e (z, l)

(
1 − 0

(12π2)
1
3

Ge(z)P0
e (z, l)

z2

)−1

(23)

Ge(z) =
(

b + a

(2z)2

)−1

b = (1 − ge(0))−1 . (24)

The RPA dimensionless polarization operatorP0
e (z, l) can be calculated (for each value

of density and temperature,z and l) by simple integration,

P0
e (z, l) = 32

4z

∫ ∞

0

y dy

ey2/2−η
ln

∣∣∣∣z + y + ivl

z − y + ivl

∣∣∣∣ (25)

while the chemical potentialη is determined by the normalization condition∫ ∞

0

t1/2 dt

e(t−η) + 1
= 2

3
2−3/2 . (26)

We studied the asymptotic behaviour of the model parameterge(0) and compared (where
possible) our results with those of [1], etc.

The self-consistency procedure, equations (20), (21), proved to be numerically stable,
and the resulting values ofge(0) were independent of the initiation points. The latter did
influence the number of iterations slightly, which varied (for the data given below) between 2
and 5 to ensure the absolute error in the determination ofge(0) was between 10−2 and 10−3.

3. Results and conclusions

The results of the above self-consistent procedure to evaluate the zero-separation value of
the electronic radial distribution functionge(0) are provided in figure 1 . Some additional
points are also given in table 1, where, in particular, we present the values ofge(0) for

Table 1. The zero-separation value of the electronic pair correlation functionge(0) for various
values of electronic density and temperature. The values ofgY

e (0) (last column) are calculated
according to (27) [11]. The values of the parameters0, 2 andrs are given for reference.

ne (1024 cm−3) T (105 K) 0 2 rs ge(0) gY
e (0)

0.2579 1.715 1.0 1.0 1.84 0.026 0.1635
1.6100 6.315 0.5 1.08 1.00 0.1262 0.2661
2.063 3.429 1.0 0.5 0.92 0.1633 0.2792
1.611 1.579 2.0 0.27 1.00 0.1903 0.2662
2.517×101 1.579×101 0.5 0.4342 0.40 0.3198 0.3856
2.579×102 1.715×101 1.0 0.1 0.18 0.4376 0.4430
2.579×105 1.715×103 0.1 0.1 0.02 0.4919 0.4939
2.160×103 3 ×103 0.01 4.24 0.09 0.6960 0.4709
1.250 2.5×102 0.01 50.00 1.09 0.9850 0.2525
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Figure 1. The zero-separation value of the pair correlation functionge(r) in the electron liquid
as a function of thee degeneracy parameter2 and for 0 = 2.0 (one point),0 = 1.0 (long
broken),0 = 0.5 (short broken),0 = 0.1 (dotted) and0 = 0.01 (full). Points represents the
results of the present model, the lines are drawn to distinguish different values of the coupling
parameter0.

the electronic densityne = 1.60 × 1024 cm−3 and temperatureT = 1.579× 105 K and
T = 6.315× 105 K, i.e. rs = 1.0 and 2 = 0.27 and2 = 1.0, respectively,rs being,
as usually, the Wigner–Seitz radius in the units ofaB , rs = 02/0.543. These values
are the only ones for which we could carry out the comparison with the results published
by Tanakaet al [10]. The values ofge(0) (0.1903 and 0.1262) coincide with the data of
[10] corresponding to the approximation, when the electron–ionLFC was set to be zero.
This coincidence is not astonishing, since here we virtually consider the one-component
electronic system.

The self-consistency procedure also permitted us to calculate the static structure factor
of electrons, these results are provided in figure 2 for three characteristic pairs of values of
the parameters0, 2 andge(0) (see table 1).

For the sake of comparison we also present in table 1 the corresponding values ofge(0)

calculated according to the formula, obtained by Yasuhara [11] through a resummation of
the electron–electron ladder diagrams,

ge(0) = [q/I1(q)]2/8 (27)

whereq ' 1.629
√

rs andI1(q) is the first-order modified Bessel function.
Notice, that though we do not include spin effects (bearing in mind that they would

manifest themselves only in magnetized Coulomb systems) it is obvious thatge(r = 0) 6= 0
only for two electrons with opposite spins. Thus, within the Hartree–Fock approximation
when the exchange effects prevail over those of the Coulomb interaction, the value ofge(0)

is just 1
2. This high-degeneracy limiting value is actually the asymptotic value ofge(0)

resulting from our calculations as2 → 0, and the smaller0, the quickerge(0) approaches
the quantum ideal-gas valuegHF

e (0) = 1
2.

On the other hand, as2 grows, the system becomes more and more classical from the
statistical point of view, when no spin effects could manifest themselves. And if, in addition,
the Coulomb interaction is relatively small (0 ' 0.01), the value ofge(0) approaches the
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Figure 2. The self-consistent electronic static structure factorSe(z) (z = k/(2kF )) for three
characteristic pairs of values of density and temperature:0 = 0.01, 2 = 50.0 (broken curve);
0 = 0.5, 2 = 1.0 (full curve); 0 = 2.0, 2 = 0.27 (dotted curve). For other parameters, see
table 1.

classical ideal-gas limiting value of 1 already at2 ' 10. In systems with stronger Coulomb
interactions (0 ' 0.1) this asymptotic value is reached at higher values of2 > 150.

In weakly coupled electron liquids with0 & 0.5 the exchange effects resulting in
attraction of electrons with antiparallel spins are compensated for by the Coulomb repulsion,
and in such systems the value ofge(0) decreases significantly with growing0. Strong
Coulomb coupling (0 & 1) can (asymptotically) reduce the value ofge(0) to zero (pure
Coulomb repulsion). In our model it appears that the exchange contribution toge(0) is
underestimated, so that this reduction already occurs at aboutrs ' 1.84, which is 22% higher
than the value stemming from the high-density expansion of the Yasuhara’s formula [11],
q = 2.

In conclusion, the dielectric formalism is applied to the description of electron one-
component liquids and a simple model expression for the electronic local-field correction
satisfying the compressibility sum rule and the exact short-wavelength limiting (‘cusp’)
condition is studied. The long-wavelength behaviour of theLFC is adjusted to theMC-fitted
equation of state. The model parameterge(0) (the zero-separation value of the electronic
radial distribution function) is obtained by the self-consistency procedure in a wide range of
thermodynamic parameters and is shown to possess physically reasonable limiting properties.

Nevertheless, further studies ofge(0) might be carried out to include low-temperature
[12] and dynamic effects.

In addition, to improve the physical self-consistency of our approach, one needs the
quantal EOS, either theoretical or numerical (obtained, e.g. within a quantum-statistical
variant of theMC method).

The staticLFC determined here is expected to become a reliable tool in the determination
of static and thermodynamic characteristics of dense Coulomb systems at intermediate and
high values of temperature. Their dynamic and kinetic properties can be studied within
an alternative approach to those pointed out by Sturm in his recent paper [13], and based
on the construction of the plasma dynamic dielectric function by the method of frequency
moments using all known exact relations and sum rules (see [4, 14] and references therein).
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